273 research outputs found

    Recrudescent Plasmodium berghei from Pregnant Mice Displays Enhanced Binding to the Placenta and Induces Protection in Multigravida

    Get PDF
    Pregnancy-associated malaria (PAM) is associated with placenta pathology and poor pregnancy outcome but the mechanisms that control the malaria parasite expansion in pregnancy are still poorly understood and not amenable for study in human subjects. Here, we used a set of new tools to re-visit an experimental mouse model of pregnancy-induced malaria recrudescence, BALB/c with chronic Plasmodium berghei infection. During pregnancy 60% of the pre-exposed primiparous females showed pregnancy-induced malaria recrudescence and we demonstrated that the recrudescent P. berghei show an unexpected enhancement of the adherence to placenta tissue sections with a marked specificity for CSA. Furthermore, we showed that the intensity of parasitemia in primigravida was quantitatively correlated with the degree of thickening of the placental tissue and up-regulation of inflammation-related genes such as IL10. We also confirmed that the incidence of pregnancy-induced recrudescence, the intensity of the parasitemia peak and the impact on the pregnancy outcome decreased gradually from the first to the third pregnancy. Interestingly, placenta pathology and fetal impairment were also observed at low frequency among non-recrudescent females. Together, the data raise the hypothesis that recrudescent P. berghei displays selected specificity for the placenta tissue enabling on one hand, the triggering of the pathological process underlying PAM and on the other hand, the induction of PAM protection mechanisms that are revealed in subsequent pregnancies. Thus, by exploiting P. berghei pregnancy-induced recrudescence, this experimental system offers a mouse model to study the susceptibility to PAM and the mechanisms of disease protection in multigravida

    Ultrastructure of the lung in a murine model of malaria-associated acute lung injury/acute respiratory distress syndrome

    Get PDF
    Background: the mechanisms through which infection with Plasmodium spp. result in lung disease are largely unknown. Recently a number of mouse models have been developed to research malaria-associated lung injury but no detailed ultrastructure studies of the disease in its terminal stages in a murine model have yet been published. the goal was to perform an ultrastructural analysis of the lungs of mice that died with malaria-associated acute lung injury/acute respiratory distress syndrome to better determine the relevancy of the murine models and investigate the mechanism of disease.Methods: DBA/2 mice were infected with Plasmodium berghei strain ANKA. Mice had their lungs removed immediately after death, processed using standard methods and viewed by transmission electron microscopy (TEM).Results: Infected red blood cell: endothelium contact, swollen endothelium with distended cytoplasmic extensions and thickening of endothelium basement membrane were observed. Septa were thick and filled with congested capillaries and leukocytes and the alveolar spaces contained blood cells, oedema and cell debris.Conclusion: Results show that the lung ultrastructure of P. berghei ANKA-infected mice has similar features to what has been described in post-mortem TEM studies of lungs from individuals infected with Plasmodium falciparum. These data support the use of murine models to study malaria-associated acute lung injury.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ São Paulo, Dept Immunol, São Paulo, BrazilUniv São Paulo, Fac Med, Lab Med Invest 59, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Phys & Earth Sci, Diadema, BrazilUniv São Paulo, Dept Parasitol, São Paulo, BrazilUniv São Paulo, Fac Pharmaceut Sci, Dept Clin & Toxicol Anal, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Phys & Earth Sci, Diadema, BrazilFAPESP: 2009/53256-7FAPESP: 2009/53889-0CNPq: 306668/2012-2FAPESP: 2011/195252-0Web of Scienc

    Predictive Criteria to Study the Pathogenesis of Malaria-Associated ALI/ARDS in Mice

    Get PDF
    Malaria-associated acute lung injury/acute respiratory distress syndrome (ALI/ARDS) often results in morbidity and mortality. Murine models to study malaria-associated ALI/ARDS have been described; we still lack a method of distinguishing which mice will develop ALI/ARDS before death. This work aimed to characterize malaria-associated ALI/ARDS in a murine model and to demonstrate the first method to predict whether mice are suffering from ALI/ARDS before death. DBA/2 mice infected with Plasmodium berghei ANKA developing ALI/ARDS or hyperparasitemia (HP) were compared using histopathology, PaO2 measurement, pulmonary X-ray, breathing capacity, lung permeability, and serum vascular endothelial growth factor (VEGF) levels according to either the day of death or the suggested predictive criteria. We proposed a model to predict malaria-associated ALI/ARDS using breathing patterns (enhanced pause and frequency respiration) and parasitemia as predictive criteria from mice whose cause of death was known to retrospectively diagnose the sacrificed mice as likely to die of ALI/ARDS as early as 7 days after infection. Using this method, we showed increased VEGF levels and increased lung permeability in mice predicted to die of ALI/ARDS. This proposed method for accurately identifying mice suffering from ALI/ARDS before death will enable the use of this model to study the pathogenesis of this disease.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ São Paulo, Inst Ciencias Biomed, Dept Imunol, BR-05508900 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ciencias Biol, BR-09972270 Diadema, SP, BrazilUniv São Paulo, Inst Med Trop São Paulo, BR-05403000 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ciencias Exatas & Terra, BR-09972270 Diadema, SP, BrazilUniv São Paulo, Inst Ciencias Biomed, Dept Parasitol, BR-05508000 São Paulo, BrazilUniv São Paulo, Fac Med Vet & Zootecn, Dept Cirurgia, BR-05508270 São Paulo, BrazilUniv São Paulo, Fac Med Vet & Zootecn, Dept Med Vet Prevent & Saude Anim, BR-05508270 São Paulo, BrazilUniv São Paulo, Fac Ciencias Farmaceut, Dept Anal Clin & Toxicol, BR-05508000 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ciencias Biol, BR-09972270 Diadema, SP, BrazilUniversidade Federal de São Paulo, Dept Ciencias Exatas & Terra, BR-09972270 Diadema, SP, BrazilFAPESP: 2009/53256-7FAPESP: 2009/53889-0CNPq: 306668/2012-2CNPq: 470590/2009-2Web of Scienc

    Fucosylated Chondroitin Sulfate Inhibits Plasmodium Falciparum Cytoadhesion And Merozoite Invasion.

    Get PDF
    Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-iEs) in the microvasculature of vital organs plays a key role in the pathogenesis of life-threatening malaria complications, such as cerebral malaria and malaria in pregnancy. This phenomenon is marked by the cytoadhesion of Pf-iEs to host receptors on the surfaces of endothelial cells, on noninfected erythrocytes, and in the placental trophoblast; therefore, these sites are potential targets for antiadhesion therapies. In this context, glycosaminoglycans (GAGs), including heparin, have shown the ability to inhibit Pf-iE cytoadherence and growth. Nevertheless, the use of heparin was discontinued due to serious side effects, such as bleeding. Other GAG-based therapies were hampered due to the potential risk of contamination with prions and viruses, as some GAGs are isolated from mammals. In this context, we investigated the effects and mechanism of action of fucosylated chondroitin sulfate (FucCS), a unique and highly sulfated GAG isolated from the sea cucumber, with respect to P. falciparum cytoadhesion and development. FucCS was effective in inhibiting the cytoadherence of Pf-iEs to human lung endothelial cells and placenta cryosections under static and flow conditions. Removal of the sulfated fucose branches of the FucCS structure virtually abolished the inhibitory effects of FucCS. Importantly, FucCS rapidly disrupted rosettes at high levels, and it was also able to block parasite development by interfering with merozoite invasion. Collectively, these findings highlight the potential of FucCS as a candidate for adjunct therapy against severe malaria.581862-7

    Global genetic diversity of var2csa in Plasmodium falciparum with implications for malaria in pregnancy and vaccine development

    Get PDF
    Malaria infection during pregnancy, caused by the sequestering of Plasmodium falciparum parasites in the placenta, leads to high infant mortality and maternal morbidity. The parasite-placenta adherence mechanism is mediated by the VAR2CSA protein, a target for natural occurring immunity. Currently, vaccine development is based on its ID1-DBL2Xb domain however little is known about the global genetic diversity of the encoding var2csa gene, which could influence vaccine efficacy. In a comprehensive analysis of the var2csa gene in >2,000 P. falciparum field isolates across 23 countries, we found that var2csa is duplicated in high prevalence (>25%), African and Oceanian populations harbour a much higher diversity than other regions, and that insertions/deletions are abundant leading to an underestimation of the diversity of the locus. Further, ID1-DBL2Xb haplotypes associated with adverse birth outcomes are present globally, and African-specific haplotypes exist, which should be incorporated into vaccine design

    Fetal-Derived MyD88 Signaling Contributes to Poor Pregnancy Outcomes During Gestational Malaria

    Get PDF
    Placental malaria (PM) remains a severe public health problem in areas of high malaria transmission. Despite the efforts to prevent infection poor outcomes in Plasmodium endemic areas, there is still a considerable number of preterm births and newborns with low birth weight resulting from PM. Although local inflammation triggered in response to malaria is considered crucial in inducing placental damage, little is known about the differential influence of maternal and fetal immune responses to the disease progression. Therefore, using a PM mouse model, we sought to determine the contribution of maternal and fetal innate immune responses to PM development. For this, we conducted a series of cross-breeding experiments between mice that had differential expression of the MyD88 adaptor protein to obtain mother and correspondent fetuses with distinct genetic backgrounds. By evaluating fetal weight and placental vascular spaces, we have shown that the expression of MyD88 in fetal tissue has a significant impact on PM outcomes. Our results highlighted the existence of a distinct contribution of maternal and fetal immune responses to PM onset. Thus, contributing to the understanding of how inflammatory processes lead to the dysregulation of placental homeostasis ultimately impairing fetal development
    corecore